
Jan Kneschke
MySQL AB

MySQL 5.1
Past, Present and Future

Agenda

• Past
• S Q L T r e e s m e e t s D y n a m ic S Q L

• P r e s e n t

• E v e n t s

• P a r t i t io n in g

• F u tu r e

• V e r t ic a l P a r t i t io n in g

About the Presenter
● Jan Kneschke
● Senior Developer in the MySQL Network

Team
● jan@mysql.com

● Drives the development of the high-
performance web-server lighttpd

● Was trainer and consultant at MySQL
before becoming a developer

Raise your hands
● Who is using MySQL 4.1 or older ?
● Who is using MySQL 5.0, 5.1 or later ?
● Who uses
● Prepared Statements
● Stored Procedures
● Partitioning

● Who is using one of the features with
another vendors RDBMS ?

Back in Time
● Last years tutorial concentrated on
● Stored Procedures, VIEWs and Triggers

● Examples can be found at
http://jan.kneschke.de/projects/mysql/sp/

● Who has attended last years tutorial ?

http://jan.kneschke.de/projects/mysql/sp/

Prepared Statements
• First available in MySQL 4.1
• S p l i t u p th e e x e c u t io n o f S Q L s ta t e m e n t s
in t o a P R E P A R E a n d a E X E C U T E p h a s e

• A t b e s t P R E P A R E o n c e , E X E C U T E
m u l t ip le t im e s

• P r e v e n t s S Q L -in je c t io n

Prepared Statements
PREPARE s FROM 'SELECT * FROM tbl
WHERE id = ?';
EXECUTE s USING @id;
DEALLOCATE PREPARE s;

Stored Procedures
• A programming language running in the

context of the DBMS
• U s e s th e s y n ta x d e f in e d in th e S Q L :2 003
s ta n d a r d

• P r o v id e s C o n t r o l-F lo w , L o o p s , E x c e p t io n s ,
C u r s o r s , ...

• S P s a r e u s e d b y T r ig g e r s , E v e n ts ,
F u n c t io n s

Stored Procedures
CREATE PROCEDURE fill_table ()
BEGIN
 DECLARE n INT DEFAULT 1000;
 ins_loop: LOOP
 INSERT INTO tbl VALUES (n);
 SET n = n - 1;
 IF (NOT n) THEN
 LEAVE ins_loop;
 END IF;
 END LOOP ins_loop;
END$$

Dynamic SQL
• fill_table() works only against one table
• S Q L S ta te m e n ts in S P s a r e s ta t ic

• P r e p a r e d S ta te m e n ts c a n o n ly u s e
p la c e h o ld e r s fo r v a lu e s , n o t fo r p a r t s o f th e
S Q L s ta te m e n t i t s e l f

• P R E P A R E ta k e s a c o n s ta n t s t r in g o r (s in c e
M y S Q L 5 .0 .1 3) a u s e r v a r ia b le

Dynamic SQL
SET @s = CONCAT(
 "INSERT INTO ", tbl_name,
 " (", field_name,") VALUES (?)");
PREPARE s FROM @s;
SET @n = n;
EXECUTE s USING @n;
DEALLOCATE PREPARE s;

SQL Trees
• New implementation of SQL trees using

Dynamic SQL
• O n ly r e q u ir e m e n t

• id INT NOT NULL PRIMARY KEY as
node-id

• parent_id INT NOT NULL referencing
the node-id of the parent node

• Name of the source-table and temporary
result tables are passed as parameters

SR-lib
• Standard Routines Library
• h t t p ://s a v a n n a h .n o n g n u .o r g /p r o je c t s /m y s q l-s r -l ib /

• A c o m m u n it y e f fo r t to c r e a te a s ta n d a r d
l ib r a r y fo r s to r e d p r o c e d u r e s

• A r r a y s , F o r-E a c h lo o p s , s y n ta x h e lp e r s ,
U n itT e s t s

• E x a m p le :

• CALL for_each_table(<db>,
<cond>, <statement>)

http://savannah.nongnu.org/projects/mysql-sr-lib/

Events
• Events can execute stored procedures at

a specific time or in a interval
• T h e y p r o v id e th e s a m e fu n c t io n a l i t y a s
cron a n d at o n U N IX o r th e ta s k -s c h e d u le r
o n W in d o w s

• E i t h e r o n e -s h o t o r r e p e a t in g e v e n ts

• R e p e a t in g e v e n ts c a n h a v e a e n d -t im e
w h ic h a ls o m ig h t r e m o v e th e e v e n t

Events
• The CREATE EVENT statement binds a

stored procedure to a event

CREATE EVENT ev_name
 ON SCHEDULE
 AT CURRENT_TIMESTAMP + INTERVAL 1 HOUR
(or) EVERY 1 WEEK STARTS '00:01:00' ENDS ...
DO <sp>

CREATE EVENT
• One Shot events
AT <timestamp>
• Repeating events
EVERY <INTERVAL> [STARTS <timestamp>] [ENDS
<timestamp>]

• Self-Removing events
ON COMPLETION [NOT] PRESERVES

CREATE EVENT
• Make sure that the statements of the SP

is not returning any result sets
• N o S E L E C T s ta te m e n ts w h ic h a r e n o t
S E L E C T ... IN T O o r a s s ig n e d to a
v a r ia b le

• E v e n t is e x e c u te d w ith o u t a c l ie n t to s e n d
th e r e s u l t s e t to

• W r i t e th e s to r e d p r o c e d u r e w ith o u t th e
e v e n t f i r s t a n d te s t i t

Testing events
• Test the SP before adding it to a event
CREATE PROCEDURE sp_check_tables () ...
• C r e a te a o n e -s h o t e v e n t b e fo r e a c t iv a t in g
th e e v e n t fo r e v e r

CREATE EVENT ev_check_tables
 ON SCHEDULE AT CURRENT_TIMESTAMP
 DO CALL sp_check_tables()

The event scheduler
• The event scheduler is triggering the

stored procedure according to your event
definition

• To check if your MySQL release if having
the event-scheduler compiled in

SHOW VARIABLE LIKE 'event%';
• In 5.1.7 it is disabled by default
SET GLOBAL event_scheduler = 1;

Disabling events
• In case you want to disable events you

can either disable a single event or all
SET GLOBAL event_scheduler = 0;
ALTER EVENT ev_check_tables DISABLE;
• If you are entering a maintenance mode and want to

disable a set of events for a while

• INFORMATION_SCHEMA.events knows all events

• Create a SP to disable them

Managing Events
• ALTER EVENT allows you to change

most aspects of the CREATE EVENT
statement

• D R O P E V E N T r e m o v e s th e e v e n t

• O n ly th e d e f in e r (c r e a to r) o f th e e v e n t c a n
a l te r i t

• I f y o u h a v e w r i t e a c c e s s to m y s q l.e v e n t y o u
c a n c ir c u m v e n t th e c h e c k s o f A L T E R
E V E N T - D O N 'T D O IT

Break
• Coming up
• P a r t i t io n in g

• S ta r t in g a t 3 :3 0

Partitioning
• Horizontal Partitioning splits the a table by

rows
• Vertical Partitioning moves columns to

other tables
• MySQL 5.1 supports Horizontal

Partitioning

Partitioning
• Reasons to use partitioning
• Speed
• Easier Management
• Distribution of rows is controlled by a

partitioning expression
• The MySQL Cluster was using

Partitioning since the first release

Partitioning Expressions
• Defines
• Number of Partitions
• Where to store rows for a table
• How to find rows
 PARTITION BY RANGE(YEAR(added)) (
 PARTITION y2004 VALUES LESS THAN (2005),
 PARTITION y2005 VALUES LESS THAN (2006),
 PARTITION y2006 VALUES LESS THAN MAXVALUE
);

Partitioning
• Use MySQL 5.1.7 for testing
show variables like 'have_par%';
• Partitioning works with all Storage

Engines
• All Partitions of a table of to be of the

same type
• No mixing of MyISAM and InnoDB

Creating Partitions
CREATE TABLE part_key (
 id INT NOT NULL AUTO_INCREMENT PRIMARY

KEY,
 name VARCHAR(32),
 added DATETIME NOT NULL
) ENGINE = myisam
 PARTITION BY KEY()
 PARTITIONS 2;

Expressions
• KEY splits by PRIMARY KEY
• HASH hashes a field with MD5 or

PASSWORD
• RANGE creates a partition for a range of

values
• LIST creates a partition for each set of

values

KEY
• KEY is best used if you want to split the

table to utilize multiples disk better
• Good for large tables which have to be

split up as they are larger than a single
disk

• The simplest way to create a partitioned
table

HASH
• HASH is a more generic version of KEY
• The hashed field is provided by the user

and might be based on the result of a
function

• The hash-function has to return a integer
• The hash-result is taken modulo the

number of partitions
... HASH(WEEKDAY(ins_date))

LINEAR HASHing
• Linear Hashing is distribution the hash-

result using a quadratic function instead
of a direct modulo

• The distribution is supposed to be better
if you want to drop partitions later

• Ask Mikael for more

RANGE
• A tighter control of the values in a

partition
• A range is define as LESS THAN

(<value>)
• If the last range has to catch all rows

which are not matched yet it uses
MAXVALUE as upper end

• Usually RANGE by year, month, ...

LIST
• List is a set of values for each partition
• If a value is not in one of the lists the

INSERT/UPDATE statement fails with an
error

Partition Pruning
• READs from a partition only take those

partitions into account which pass the
WHERE clause

• This is called pruning
• If you only have to scan 1 of 4 partitions

the query is executed 4 times faster

Partition Pruning
• EXPLAIN got extended to show pruning
EXPLAIN PARTITIONS
 SELECT * FROM part_range
 WHERE added = now()\G
...
 partitions: y2006
...

Managing Partitions
• ALTER TABLE is used to change the

layout of partitions
• ADD PARTITION adds a new partition
• DROP PARTITION drops the partition

including its data

Maintaining Partitions
• ALTER TABLE ... REORGANIZE is used

to change the partition layout without
loosing any data
• Usually used to change the partition

rules for RANGE and LIST

Maintaining Partitions
• ALTER TABLE ... COALESCE reduces

the number of partitions for HASH and
KEY partitions

• ADD PARTITION is used to increase
them

• REORGANIZE doesn't work with HASH
and KEY

Maintaining Partitions
• ALTER TABLE ... COALESCE reduces

the number of partitions for HASH and
KEY partitions

• ADD PARTITION is used to increase
them

• REORGANIZE doesn't work with HASH
and KEY

Maintaining Partitions
• ALTER TABLE also provides access to

OPTIMIZE, ANALYSE, CHECK and
REPAIR partitions

• A REBUILD is recreating partitions from
scratch
• All data is dropped and reinserted
• This can remove fragmentation

Limitations
• No FULLTEXT
• No GEOMETRY columns
• No FOREIGN KEYS
• If a table has a PK all columns of the

partitioning expression have to part of the
PK

Vertical Partitioning
• Split the table by column instead of by

row
• Move large, less used columns into a

separate table
• Reducing the average length of a row
• Speed of Queries might go up as less

data is read and data can be kept in
memory most of the time

Vertical Partitioning
• MySQL doesn't support vertical

partitioning by itself
• You have to emulate it in your application
• Perhaps you will see stored procedures

helping you with this task in next years
tutorial

Gimmicks
SELECT user, host, info, time
 FROM INFORMATION_SCHEMA.processlist
 WHERE command = 'locked';
SELECT * FROM mysql.general_log;

Gimmicks

Additional Talks
• Dynamic SQL by Konstantin Osipov
• E v e n ts b y A n d r e y H r is to v

• W r i t in g A d v is o r s fo r M y S Q L N e tw o r k

Thanks
• More questions ?
• T h a n k s fo r y o u r a t te n t io n

S e n d fu r t h e r q u e s t io n s to

ja n @ m y s q l.c o m

